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Abstract

We develop an efficient algorithm for Synthetic Aperture Sonar imaging based on

the one-way wave equations. The algorithm utilizes the operator-splitting method

to integrate the one-way wave equations. The well-posedness of the one-way wave

equations and the proposed algorithm is shown. A computational result against real

field data is reported and the resulting image is enhanced by the BV-like regularization.

1 Introduction

In this paper we discuss the migration method based on one-way wave equations [1, 2]

for Synthetic Aperture Sonar (SAS) imaging [3]. The one-way wave equation integrates

the data within a given angle and minimizes the undesirable effects of unwanted reflections.

Efficient and stable integration methods of the one-way wave equation based on the operator

splitting method are used to develop a fully discretized algorithm. The stability analysis

and the required operation count of the proposed algorithm are given. We test the proposed

method for real field data and report our SAS imaging results. We also discuss the image

enhancement method for the resulting images, based on BV-like regularization technique [5].

In side-scan (side-looking) sonar systems a platform containing a moderately large real

aperture antenna travels along a rectilinear path in the along track direction and periodically

transmits a pulse at an angle that is perpendicular to the platform path. These systems

produce strip-map (SAS) images . A strip-map image is built up as follows; the imaging

system operates such that the echoes from the current pulse are received before the next

pulse is transmitted. As these echoes are received they are demodulated, pulse compressed,

and detected (only the magnitude information is retained). Each detected pulse produces a
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range line of the real aperture image. As the platform moves these range lines are displayed

next to each other at pixel spacings that scale relative to the along track spacing of the

pulses ∆x = vpτ where vp is the platform velocity and τ is the pulse repetition period. The

final image is essentially a raster scan of a strip of the sea floor, hence the name ”strip-map

image”. Synthetic aperture imaging is a coherent imaging technique that exploits the extra

information available in the phase of the real aperture data. We adopt the Stop and Go

model; a point source radiates at time t = 0, a spherical wave that reaches the sampling

points after different time intervals. If the source is placed at (x0, z0) the time t(x, x0, z0) at

which the wave arrives at the sampling point (x, z) is:

t(x, z, x0, z0) =
2

c

√

(x − x0)2 + (z − z0)2.

The field d due to a distribution s(x, z) of source emitting at t = 0 can be expressed by

d̂(x, z, ω) =
1

4π

∫

s(x′, z′)
e−j(2ω/c)

√
(x−x′)2+(z−z′)2

√

(x − x′)2 + (z − z′)2
dx′dz′

where d̂ is the Fourier transform (in time) of the signal d. SAS measures

SAS(x, t) = d(x, z = 0, t)

along the sonar path (x, z = 0) = Γ.

Thus, SAS imaging is formulated as a linear inverse problem;

Problem: Reconstruct s(x, z) from SAS data SAS(x, t).

Among a number of algorithms [3, 4, 6] and reference therein, which have been developed

for Problem the frequency domain ω-k method based on Stolt’s map [3, 7, 1] is the most

efficient and accurate method. As will be discussed in Section 4 it has certain limitations, es-

pecially it assumes the homogeneous scattered media. The proposed method can incorporate

inhomogeneous media and has additional capabilities, (see Section 4).

An outline of the paper is as follows. In Section 2 we describe a geometric migration

method based on one-way wave equations for reconstructing s. A noble algorithm using

the integration of the one-way wave equations based on the operator-splitting method is

developed and its stability and complexity are analyzed in Section 3. In Section 3 we list

advantages of the proposed method comparing to the ω-k method. The image enhancement

technique based on the BV-type reguralization is discussed in Section 4. In Section 5 we

present a test against real field data, provided by the Naval Surface Warfare Center-Panama

City, Florida and a comparison with the ω-k method.
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2 Geometric Migration

We construct an approximating solution based on the geometrical migration via the one-way

wave equations. Let

A(kx, ω) = Fx,t SAS(x, t).

Assume the plane wave extrapolation

D(kx, kz, ω) = A(kx, ω)exp(j(ωt + kxx + kzz))

with

ω2 =
c2

4
(k2

x + k2
y).

Then the inverse Fourier transform of D

d̃(x, z, t) =
1

(2π)3

∫

D(kx, kz, ω)dkxdkzdω

satisfies the wave equation

(3)
4

c2

∂2d̃

∂t2
=

∂2d̃

∂x2
+

∂2d̃

∂z2

with the boundary condition at z = 0

d̃(x, 0, t) = SAS(x, t)

and

d̃(x, z, T ) = 0 and
∂d̃

∂t
(x, z, T ) = 0.

Wave equation based migration integrates the wave equation (3) backward in time to obtain

an approximation s̃ of distribution s as;

d̃(x, z, 0) = s̃(x, d).

SAS data is created by integrating over the beam-width of the sensor. The radiation

pattern of any dimension (width or length) of an aperture has an angular dependence that is

referred to as the beam pattern of the aperture. Beam patterns are frequency dependent and

have beam-widths given by the 3dB response of their main lobes; θ = αw
c

fD
where D is the

length of the aperture and f are the frequency of the signal that the aperture is transmitting

or receiving. The term αw is a constant reflecting the main lobe widening due to weighting

of the aperture illumination function. For example f = 120kHz and D = 0.04m and αw = 1

gives θ = 17.9 degrees Thus, in order to speed-up the wave equation based algorithm and
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minimize the undesirable effects of unwanted reflections we use the (15 degree) one-way wave

equation based on

(4) kz = k

√

1 −
(

kx

k

)2

∼ k (1 − 1

2
(
kx

k
)2)

where k = 2ω/c and we assumed |kx/k| << 1. In time domain (4) is equivalently written as

(5)
4

c2

∂2u

∂t2
+

2

c

∂2u

∂z∂t
=

1

2

∂2u

∂x2
.

with

u(t, x, 0) = SAS(x, t), x ∈ Γ.

An advantage of the method is that it allows one to have a specified variable wave speed

c = c(x, z) of media. The corresponding method for the polar and cylindrical geometry is

given as

Polar coordinate
4

c2

∂2u

∂t2
+

2

c

∂2u

∂ν∂t
=

1

2

1

r

∂2u

∂θ2
.

Cylinder

4

c2

∂2u

∂t2
+

2

c

∂2u

∂ν∂t
=

1

2
(
1

r

∂2u

∂θ2
+

∂2u

∂z2
).

We can derive the wide angle one-way wave equation based on the rational approximation

(6) kz = k

√

1 −
(

kx

k

)2

∼ k (1 − α(kx/k)2

1 − β(kx/k)2
)

we have

kz(k − β

k
k2

x) = k2 − (α + β)k2
x

The differential form is given by

(7)
4

c2

∂2u

∂t2
+

∂

∂z

(

2

c

∂u

∂t
− β

c

2

∫

∂2u

∂x2
dt

)

= (α + β)
∂2u

∂x2

With α = .5, β = .25 and α = .478, β = .376, (7) is called 45 degree and 65 degree

approximation, respectively.

3 Migration by the operator splitting

With normalization of the time (t) by the wave speed
c

2
and reverting the time, (5) is written

as

(8)





ut

vt



 =







0 0

0 − ∂

∂z











u

v



 +







0 1

1

2

∂2

∂x2
0











u

v



 .
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So, we apply the time splitting on [t, t + ∆t] of the Lie-Trotter form

(9)





ut

vt



 =







0 0

0 − ∂

∂z











u

v



 ,





ut

vt



 =







0 1

1

2

∂2

∂x2
0











u

v



 .

The first step of (9) is equivalent to the shift operation;











v(t + ∆t, x, z) = v(t, x, z − ∆t), z ≥ ∆t

v(t + ∆t, x, z) =
∂

∂t
SAS(x, t + z), z ∈ [0, ∆t)

The second step of (9) is the one-D wave equation in x and is well-posed. In fact, let

Ω = [−L, L] × [0, 1] and H1,x(Ω) = {φ ∈ L2(Ω) :
∂

∂x
φ ∈ L2(Ω)}. Let X1 = H1,x(Ω) × L2(Ω)

be the Hilbert space equipped with

|(u, v)|2X1
=

∫

Ω

(|∂u

∂x
|2 + 2|v|)2) dxdz.

Define the linear operator A1 on X1 by

A1(u, v) = (v,
1

2

∂2u

∂x2
)

with

dom(A1) = {(u, v) ∈ X1 : v ∈ H1,x(Ω),
∂2u

∂x2
∈ L2(Ω)

with
∂u

∂x
(±L, z) = 0}

Then, A1 is dissipative and skew-adjoint on X1 and thus generates a strongly continuous

group on X1. Hence, it is easy to show that if (u, v) is generated by (9) then

|(u, v)(t + ∆t)|2X1
≤ |(u, v)(t)|2X1

+

∫ t+∆t

t

| ∂

∂t
SAS(x, s)|2 dxds

and

|(u, v)(T )|2X1
≤

∫ T

0

| ∂

∂t
SAS(x, t)|2 dxdt.

Similarly, we can argue that (8) itself is well-posed, i.e., if we define the operator A on X1

by

A(u, v) = (v, divx,z(
1

2

∂u

∂x
,−v))

with

dom(A) = {(u, v) ∈ X1 : v ∈ H1,x(Ω), divx,z(
1

2

∂u

∂x
,−v) ∈ L2(Ω) with v(x, z) = 0,

∂u

∂x
(±L, z) = 0},

5



then A is dissipative and generates a contractive, strongly continuous semigroup on X1.

We fully discretize (9) and obtain

Algorithm I

(10)

v̂n+1
i,j+1 = vn

i,j, 1 ≤ j ≤ n with v̂n+1
i,0 =

SASn+1
i − SASn

i

∆t

un+1
·,j = (I +

c̃2

2
H)−1(un

·,j + ∆tv̂n+1
·,j ), vn+1

·,j =
un+1
·,j − un

·,j

∆t
, 1 ≤ j ≤ min(n, M)

where un
i,j and vn

i,j represents the value of u and v at the grid-point (i∆x, j∆z) at time n∆t,

respectively. Here, ∆t = ∆z and c̃ =
∆z

∆x
, H ∈ RN+1,N+1 is the tri-diagonal matrix defined

by
(Hu)i = −(ui+1 − 2ui + ui−1), 2 ≤ i ≤ N,

and (Hu)1 = −(u2 − u1), (Hu)N+1 = uN+1 − uN

and corresponds to the central difference approximation of −∂2u

∂x2
. Also, we used the implicit

Euler scheme to integrate the second step (1-D wave equation in x). That is,

un+1
i − un

i

∆t
= − 1

∆x2
(Hu)i,

vn+1 − ṽn

∆t
= un+1.

The number of operations at the n-th time step of (10) is of order O(N min(n, M)). M is

the number of the focusing step at each pixel (i, j) in cross-range direction x and if j ≥ M ,

then un+1
i,j+1 = un

i,j. Thus, the total operation is of order O(MM2).

For the wide angle equation (7) we define

F =
2

c

∂u

∂t
− β

c

2

∫ t

0

∂2u

∂x2
dt and v =

2

c

∂u

∂t
.

It follows from (7) that

2

c

∂F

∂t
= (

2

c
)2∂2u

∂t2
− β

∂2u

∂x2
= −∂F

∂z
+ α

∂2u

∂x2

and
∂

∂t
(v − F ) =

c

2
β

∂2u

∂x2
.

Thus, (7) is equivalent to

(11)

2

c

∂F

∂t
+

∂F

∂z
= α

∂2u

∂x2

2

c

∂u

∂t
= (v − F ) + F

2

c

∂

∂t
(v − F ) = β

∂2u

∂x2
.
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With ṽ = v − F , we use the three step splitting:

(12)







































∂F

∂t
+

∂F

∂z
= 0

∂u

∂t
= 0

∂ṽ

∂t
= 0







































∂F

∂t
= 0

∂u

∂t
= ṽ

∂ṽ

∂t
= β

∂2ṽ

∂x2







































∂F

∂t
= α

∂2F

∂x2

∂u

∂t
= F

∂ṽ

∂t
= 0

If β = 0 then ṽ = 0, F = v and thus it reduces to the two-step splitting method (9). The

first equation is accompanied by the boundary condition

F (t, x, 0) =
∂

∂t
SAS(t, x) − ṽ(t, x, 0).

Each step of (12) is a well-posed linear system as shown above and we can prove that (11)

is well-posed. In fact, let Ω = [−L, L] × [0, 1] and define the linear operator on A2 on

X2 = L2(Ω) × H1,x(Ω) × L2(Ω) by

A2(F, u, ṽ) = (−∂F

∂z
+ α

∂2u

∂x2
, ṽ + F, β

∂2u

∂x2
)

with

dom(A2) = { ∂

∂z
F ∈ L2(Ω), with F (·, 0) = 0 and

∂2

∂x2
u ∈ L2(Ω) with

∂u

∂x
(±L, z) = 0,

∂

∂x
(ṽ + F ) ∈ L2(Ω)}.

We equip X2 with norm

|(F, u, ṽ)|2X2
=

∫

Ω

(| ∂

∂x
u|2 +

1

α
|F |2 +

1

β
|ṽ|2) dxdz

Then, A2 is dissipative, i.e.,

(A2(F, u, ṽ), (F, u, ṽ))

=

∫

Ω

(
∂2u

∂x2
(ṽ + F ) +

∂u

∂x

∂

∂x
(ṽ + F ) − ∂F

∂z
F ) dxdz

= −1

2

∫ L

−L

|F (x, 1)|2 dx ≤ 0.

Since range(A2) = X2, A2 generates a strongly continuous, contraction semigroup on X2.

Similarly, we have the energy estimate

∫

(| ∂

∂x
u(T )|2 +

1

α
|F (T )|2 +

1

β
| ˜v(T )|2 dxdz ≤

∫ T

0

∫

|F (t, x, 0)|2 dx dt.

7



Algorithm I is extended to integrate (12) as follows;

Algorithm II

F̂ n+1
i,j+1 = F n

i,j , 1 ≤ j ≤ n with F̂ n+1
i,0 =

SASn+1
i − SASn

i

∆t
− ṽn

i,0

ûn+1
·,j = (I + βc̃2H)−1(un

·,j + ∆tF̂ n+1
·,j ), F n+1

·,j =
ûn+1
·,j − un

·,j

∆t
, 1 ≤ j ≤ min(n, M)

un+1
·,j = (I + αc̃2H)−1(ûn+1

·,j + ∆tṽn
·,j), vn+1

·,j =
un+1
·,j − ûn+1

·,j

∆t
, 1 ≤ j ≤ min(n, M).

That is, we require double the operations for the integration of Algorithm II.

4 Advantages of the proposed methods

The frequency domain ω-k method based on Stolt’s map [7] is the most efficient and accurate

method for the homogeneous media due to the efficiency of fast Fourier transform. It also

assumes a rectilinear sonar path.

We can use our proposed algorithms as a means to compensate the motion of sonar path.

That is, let Γ be a curved sonar path and Γ0 is a reference rectilinear path (z=0). Then we

solve (5) or (7) on the domain enclosed by the boundaries Γ and Γ0 with boundary value

u(t, x, z) = SAS(t, x), (x, z) ∈ Γ

In this way we have the mapped-SAS data u(t, x, 0) at Γ0 and then apply the omega − k

method for the rectangular domain Ω.

Our implementation (10) of the one-way wave equations is easily adjusted to the case of

layered media c = c(z) by varying the range increments ∆z.

The proposed method can allow to localize the integration on sub-layered regions (assum-

ing the homogeneous media). Also, we can integrate (5) or (7) in overlapped sub-domains in

the cross-range (x) direction and then apply the superposition. This improves the efficiency

of the proposed algorithms.

5 BV-type Regularization for Enhancement of SAS imag-

ing

SAS imaging s(x, z) may be altered by inhomogeneity of the field, sensor noise and irreg-

ularity of the sonar path and so on. We use the image enhancement technique based on

BV-type reguralization [5].

8



Enhancement S of s minimizes

(12)

∫

Ω

|S − s|2 dxdz + β

∫

Ω

ϕ(|∂S

∂x
|2 + |∂S

∂z
|2) dxdz

where

β > 0 is the regularization parameter

and

Q(φ) =

∫

Ω

ϕ(|∇S|2) dxdz defines the restoration energy.

The followings summarize our findings in [5] on the enhancement based on(12);

• ϕ(t2) = t2 corresponds to the standard Gaussian filter and works well for a smooth

image s.

• ϕ(t2) = t corresponds to the BV (nonlinear) filter and restores edges and flat regions

of image s very well. But, it has significant stair-case effects.

• In order to deal with images with multi-scales of edges, flat, and smooth regions we

developed an algorithm which uses

ϕ′(s) =



















1√
s

s ∈ [1,∞)

1 s ∈ [δ, 1]
1√
s

s ∈ (0, δ)

It is based on the scale analysis and we demonstrated the applicability of the algorithm

in [5].

• The necessary and sufficient condition of (12) is given by

−β ∇ · (ϕ′(|∇S|2)∇S) + S = s.

An efficient algorithm for finding S based on the fixed point iterate;

−β ∇ · (ϕ′(|∇Sk|2)∇Sk+1) + Sk+1 = s

is developed and analyzed in [5] and is used in our test.

6 A Test

The algorithm is successfully applied to real data that are available to us via the Naval Surface

Warfare Center (NSWC) and shows a promising capability. A full capability is going to be

tested in the line of its advantages discussed in Section 4. In a CRSC tereport, CRSC-

TR09-12 at http://www.ncsu.edu/crsc/reports/reports09.htm we show the raw SAS data,

SAS imaging by algorithm (10), and the image enhanced by our enhancement algorithm.

9

http://www.ncsu.edu/crsc/reports/reports09.htm


References

[1] J.F. Clarebout, Coarse grid calculations of waves in inhomogeneous media with appli-

cations to delineation of complicated seismic structure, Geophysics, 35 (1970), 407-418.

[2] M.N. Guddati and A.H. Heidari, Migration with arbitrary wide-angle wave equations,

Geophysics, 70 (2005), S61-S70.

[3] D.W. Hawkins, Synthetic aperture imaging algorithms: with applications to wide band-

width sonar, Ph.D thesis, University of Canterbury, 1996.

[4] M.P. Hayes and P.T. Gough. Broad-band synthetic aperture sonar. IEEE Journal of

Oceanic Engineering, 17 (1992), 80-94.

[5] K. Ito and K. Kunisch, BV-type Regularization methods for convoluted objects with

edge-flat-grey scale, Inverse Probles 16 (2000), 909-928.

[6] M. Soumekhi, Fourier Array Imaging, Prentice Hall, Englewood Clifs, NJ, 1994.

[7] R.H. Stolt, Migration by Fourier transform, Geophysics, 43 (1978), 23-48.

10


	Introduction
	Geometric Migration
	Migration by the operator splitting
	Advantages of the proposed methods
	BV-type Regularization for Enhancement of SAS imaging
	A Test

